50x^2=x2+5

Simple and best practice solution for 50x^2=x2+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 50x^2=x2+5 equation:



50x^2=x2+5
We move all terms to the left:
50x^2-(x2+5)=0
We add all the numbers together, and all the variables
50x^2-(+x^2+5)=0
We get rid of parentheses
50x^2-x^2-5=0
We add all the numbers together, and all the variables
49x^2-5=0
a = 49; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·49·(-5)
Δ = 980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{980}=\sqrt{196*5}=\sqrt{196}*\sqrt{5}=14\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{5}}{2*49}=\frac{0-14\sqrt{5}}{98} =-\frac{14\sqrt{5}}{98} =-\frac{\sqrt{5}}{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{5}}{2*49}=\frac{0+14\sqrt{5}}{98} =\frac{14\sqrt{5}}{98} =\frac{\sqrt{5}}{7} $

See similar equations:

| 6=(10+x+3) | | x+10+x+10+3x=180 | | 6(10+x+3=) | | k-19=-21 | | 5.2=d/4 | | 7x-22=6x+12 | | w+11=6 | | 2x+5=+3x+4 | | 17x-11=180 | | -1+5q=4q-10 | | 20+2x=4(x-6) | | 13j-8j+3j+2j-9j=5 | | x+5(7x-1/4)+10=10x-(12+x) | | -8x+11=51 | | 0=-0.026x(x-46) | | (7x/5)-(2x/10)=-6 | | n-34=36 | | 8(4p+1)=32+ | | 3x+-15=6x+7 | | 5(5x+6)=12 | | 9p=95+45 | | 7r+4r-3r=16 | | 3(14)x=45x | | 9x+1,4=4x+0.9 | | 2.4(2x-3)=4(x=1)=4 | | 63=9j | | f3=9 | | 100=2^n | | 27x+7=17x+1 | | 12=–4(6+c) | | 9x+7-4+8x=20x-5x+8-2 | | x+8=14-5 |

Equations solver categories